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In a continuation of previous investigations [l-4] devoted to the question of using first integrals in problems 

of the optimal control of dynamical systems, the optimal control problem for the motion of a multi- 

dimensional non-linear system over a given time interval with fixed endpoints for the phase trajectory is 

considered. The quality of the control is estimated by a functional in the form of a definite integral of a 

weighted sum of squares of the components of the controlling forces. In a number of cases [S-7] such a 

functional gives an estimate of energy losses during control, and the corresponding variational problem is 

called optimal for minimum energy loss. Based on the use of first integrals of the free equations of motion a 

method is developed to find the upper limit of the least necessary energy loss to displace the controlled 

non-linear dynamical system from a given initial phase state to a given final state in a given time. The 

efficiency of the method is illustrated by examples, including the solution of the problem of estimating the 

limiting possibilities of an energetically optimal control system for controlling the motion of an artificial 

satellite in a gravitationally attractive Newtonian central field. 

IT IS well known [5-121 that the exact solution of optimal control problems is only possible very 
rarely, and only for special types of dynamical system. The search for approximate solutions of 
optimal problems also, as a rule, involves considerable difficulties [9-121. Hence it is of interest to 
develop methods for estimating some or other of the properties of optimal control processes for 
dynamical systems without determining the exact solution of the variational problem itself. 

1. Consider the multidimensional non-stationary non-linear dynamical system whose controlled 
motions are described by the equations 

X’ = f(x, t) + B(x) u(x, I) 

X= (XI,. . . ,Xn), u = (u,, . . . ,u,) 
(1.1) 

Here x is an n-dimensional vector of phase coordinates, u is an m-dimensional vector of 
controlling forces, andf(x, t) and B(x) are a given vector-function and matrix of dimensions (n x 1) 
and (n x m), respectively. 

Suppose the states of the system at the initial time t = 0 and at the end of the control process at 
t = Tare given by the formulae 

x(0) = x0 (1.2) 

x(T) = xr (1.3) 

where x0 and xr are given n-dimensional vectors, and T is a given positive number. 
We shall call the pair of vector-functions {x(t), U(X, t)} an admissible controlled process of the 

dynamical system (1.1) if these functions satisfy Eqs (1.1) for tE [0, T] and boundary conditions 
(1.2), (1.3). 
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We shall assume that the set of admissible controlled processes of system (1.1) is not empty and 

denote it by 0. 
To estimate the quality of the controlled process we apply a functional of the form 

J[x( .),u(*)] = ; [ j_qy]z dt 
I 

(1.4) 

where the k, are given constants (weighting factors). 
Suppose there exists an admissible controlled process {x*(t), u,(X , t)} such that 

min J[x(.),u(.)I = J[x*(.),u.(.)l 
Ix,u]En 

We shall call a pair of functions {x,(t), u,(x, t)} that satisfy this relation energetically optimal 
controlled processes, and the quantity J[x,( .), u,(e)] = J, the least necessary energy loss for 
displacing the dynamical system (1.1) from the given initial phase state (1.2) to the given final phase 
state (1.3) in time T. 

The aim of the paper is to find the upper limit of the least necessary energy loss J,. 

There are various approaches to the search for this estimate. Firstly, one can, using known methods from the 
theory of optimal control, solve directly the variational problem of finding the minimum of the functional (1.4) 
with differential constraints (1.1) and boundary conditions (1.2), (1.3). After determining the extremals {x,(t), 
u*(x, t)} the quantity J* is calculated from formula (1.4). Secondly, an estimate of J* can obviously be 
obtained by constructing or estimating the admissibility set of the dynamical system and solving the 
corresponding non-linear programming problem [13]. The advantage of one or other approach to obtaining an 
estimate of J* is obviously governed by the specific form of system (1.1) and boundary conditions (1.2), (1.3). 

Below a method is presented of estimating the least necessary energy loss to displace dynamical 
system (1.1) from state (1.2) to state (1.3). This method is based on the use of first integrals of the 

equations of free motion 

X’ = Rx, t) (1.5) 
We have the following theorem. 

Theorem I. Suppose that the function w(x, t) is a first integral of Eqs (1.5) and is such that the 
following conditions are satisfied. 

1. A functional of the form 

G[X(‘)] = f ! k; (V’, W(X,t), bj(X)j2 df (1.6) 
0 j=l 

is defined over the entire set of admissible controlled processes a. 
2. The solution of the Cauchy problem 

X’ = f(X, t) + B(X) u” (X, I), x(0) = x0 (1.7) 

$(X, r) = -kT (V.W(X,~), bj(X)), j = 1,. . . ,VI (14 

exists and satisfies the boundary condition (1.3), i.e. {x”(t), u”(x) t)} ER 
Then the least necessary energy loss J, satisfies the inequality 

J. G W(XO> 0) - W(XT, T) (1.9) 

Here 8, is the gradient operator with respect to the variables xl, . , x, , bj(X) is the jth column 
vector of the matrix B(n), and ( , ) is the scalar vector product. 

To prove inequality (1.9) we consider a function w(x, t) satisfying the conditions of Theorem 1. 
We compute the total derivative with respect to time of the function W(X, t). From Eqs (1.1) we 
obtain 

~w(x, tydt = aw(x, tyat t (vX w(~, t), f(x, t) +B(x) u ) (1.10) 
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Because the function w(x, t) is a first integral of Eqs (1.5) 

3w(x, r)/at + (VX w(x, t), J-(x, I) ) = 0 

Using this relation and integrating both sides of Eq. (1.10) over time, we obtain 

w(+,T) = w(x,,O)+ Ir(v,W(X,f),B(X)uM 
0 

(1.11) 

We consider the auxiliary functional 

J, [x( .I, 4 .I1 = “‘(XT, 0 + 416 1x( . )I +J [XC . ), UC 1 )I (1.12) 

By the conditions of Theorem 1, functional (1.12) is defined on the entire set of admissible 
controlled processes a. 

Using formula (1.11) and elementary transformations this functional can be written in the form 

m Jb[X( .).u(.)l = w(xo,O) + L i c [ !!@fi.? 

2 

20i=1 ki 
+ ki(vxw,bi)] dt 

from which the relation 

min 
]*,u]E” 

Jb [x( .).u( ‘)I = Jb [x0( *),u”( *)I = w(Xo.0) (1.13) 

follows directly, where the controlled process {x”(t), u”(x, t)} is determined by the solution of the 
Cauchy problem (1.7), (1.8). 

Because the functional (1.6) is non-negative on the set R, the inequality 

J, Q mh IJ[x(.),u(.)l +W[x(~)ll 
{x,u)ER 

(1.14) 

holds. 
Using the fact that w(xr, r) does not depend on the choice of the controlled process, from 

relations (1.12)-(1.14) we directly obtain inequality (1.9). 
We shall describe one of the possible ways of applying Theorem 1 in practice. 
We know that Eq. (1.5) has 12 independent first integrals. Suppose that in this or some other way 

we have determined the independent first integrals u1 (x, t), . . . , uk (x, t), k<cn. 
It is obvious that the function 

w(x,t) = ii Ujtpj(U,, . . ,I&) (1.15) 
i= 1 

where the ai are arbitrary parameters and the cpi are arbitrary continuously-differentiable functions 
of k arguments, is also a first integral of Eqs (1.5). Under given conditions one can choose 
parameters ai and functions qi(yi, . . . , yk) in such a way that for a w(x, t) of the form (1.15) the 
conditions of Theorem 1 are satisfied. This determines a suitable first integral, and an estimate for J, 
is obtained from formula (1.9). 

Example I. Consider the problem of estimating the least necessary energy loss to stop the rotation of an 
asymmetric rigid body. 

The equations of the controlled rotation of a rigid body about a fixed point (centre of mass) have the form 

[I21 
I,w; +u-I,)w,w, = PIU, (1 2 3) (1.16) 

The letters in parentheses denote cyclic permutations of the indices, the Zi are the principal (central) 
moments of inertia, the oi are components of the angular velocity of the body, the PiUi are controlling moments 
about each of the comoving axes, & = cons& and the ui are the controls. 

We pose the problem of estimating the least value of the functional (1.4) on the set of controlled processes 
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{w(t), u(t)} which take the dynamical system (1.6) from a given initial state ~~(0) = Wai to the origin of 
coordinates oj(T) = 1, i = 1,2, 3 in a given time T. 

In the variables xi = Zioib;’ Eqs (1.16) reduce to the form 

Xl . = (I, -I,)I;‘z;‘p~p~p;~x*x~+u~ 

x0 L = I, wo, 8;’ (1 2 3) 

We know (121 that when the conditions 

(1.17) 

Z, (1, - zz 102’0; + I, (II - I, 1 P: 0: + (Z, - I, ) I, P: a: = 0 (1.18) 

a1 = uz = u, = 0 

are satisfied, Eqs (1.17) have a first integral which is the Euclidean norm of the phase vector n, i.e. the function 
u(x) = (6 + . . +xy. It is assumed below that conditions (1.18) are satisfied. 

Following (1.15), we shall look for a function satisfying the conditions of Theorem 1, of the form 

W(X) = Cu(x) (1.19) 

where C is a constant to be determined. In functional (1.4) we take m = 3, k, = k2 = k3 = k. Then, choosing 
controls ui according to formulae (1.8) and (1.9), and taking Eqs (1.17) into account, we obtain 

du(x)/dr = -0~’ 

from which we deduce that for C = u(xo)l(k2T) a f unction of the form (1.19) satisfies all the conditions of 
Theorem 1, from which we obtain the required estimate 

J. < ua(X,l/(k’T) (1.20) 

2. An assertion with its own independent significance follows directly from Theorem 1. We shall 
formulate it as follows. 

Theorem 2. Suppose w(x, t) is a first integral of the free equations of motion (1.5), satisfying 
condition 1 of Theorem 1, and x,(T) is the value of the solution of the Cauchy problem (1.7)) (1.8) 
at time T. Then the least necessary energy loss J, for taking dynamical system (1.1) in a time T from 
an arbitrarily specified initial state (1.2) into a final phase state x r = x,(T) satisfies inequality (1.9) 
at xr = x,(T). 

This theorem enables us to obtain estimates of the form (1.9) for all final states (1.3) lying on 
phase trajectories of the Cauchy problem (1.7), (1.8) defined by a first integral w(x, t). Because 
there is considerable freedom in the choice of the functions w(x, t), the estimate of the limiting 
possibilities of energetically optimal control systems can be obtained over a wide phase space 
domain, defined by the collection of points x,(T). 

Example 2. Consider the problem of estimating the limiting possibilities of an energetically optimal control 
system for the motion of an artificial satellite (AS) in a Newtonian gravitational field about a central point 0. 

We place the origin of a Cartesian system of coordinates x 1, x2, x3 at 0, and suppose that the AS is in 
addition acted upon by a rocket motor. Then in dimensionless variables the differential equations of the AS 
motion have the form [14] 

Xl 
‘=.X ‘= 

4’ x1 . = X5’ 3 -5 

(2.1) 

Here we have used the following relations between the dimensionless coordinates Xi, the time t, the rocket 
forces Ui and the corresponding dimensional quantities x. ,R, tR, UiR: Xi = XjR/rO, t = tR/(r&O)1’2, ui = uiR/gO, 

where r. is a tixed (perhaps initial) distance from the centre of attraction and go is the acceleration due to 
gravity at a distance r. from the centre of attraction. 

The system of equations (2.1) has been the subject of numerous investigations. For example, results have been 
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presented [14] of investigations into the behaviour of Eqs (2.1) in the case when the rocket acceleration u is 
constant in magnitude and direction. 

It is known that differential equations for Keplerian motion (Eq. (2.1) for ui = 0, i = 1, 2, 3) have first 
integrals. We will take the first integral w(x, t), employed in Theorems 1 and 2 to estimate the limiting 
possibilities of energetically optimal control systems, to be a function of the form 

w(x,t) = oI((xi +x: +x,1)/2 - l/r] (2.2) 

i.e. a function equal to the product of an arbitrary constant (Y and the energy integral for Keplerian motion. 
We shall consider AS motion under the control specified by formulae (1.8) and (2.2). To describe this motion 

we obtain from (2.1), (1.8) and (2.2) the relations 

X1 = x,, x; = x,, x; = X6 

. = Xl X1 
x, -- 

r’ 
- olkfx,, x; = -- - crk;x, 

r3 
(2.3) 

XS xi = - - - ctk; x6 
rJ 

Equations (2.3) with CU>O describe AS motion in a centrally attracting Newtonian gravitational field, 
perturbed by resistive forces proportional to the projections of the AS velocity onto the axes of the Cartesian 
system of coordinates. 

In (1.4) and (2.3) we take m = 3, ki = k, i = 1, 2, 3. Then omitting the intermediate transformations, we can 
write down the following first integrals of the non-linear system of equations (2.3) 

-5% -xsxs = C, exp(-aklt) 

CI = -%2%6 -xosxos (1 2 3 , 4 5 6) 
(2.4) 

where the Ci are constants determined by the initial state (1.2). 
Multiplying each of the integrals (2.4) by xi, x2 and x3, respectively, and adding term-by-term, we obtain 

c,x, +c,x, +c,x, = 0 (2.5) 

Thus the AS motion in a centrally attracting Newtonian gravitational field under control given by Formulae 
(1.8) and (2.2) proceeds, as in the Keplerian case, in an invariant Laplace plane (2.5). Here we have the first 
integrals (2.4), generalizing three known scalar area integrals of Keplerian motion [14]. 

We denote by Xr the domain of phase space consisting of those points with coordinates equal to the value of 
the solution of the Cauchy problem (2.3), (1.2) at time t = Tand satisfying relations (2.4). An arbitrary point of 
the set XT for given x0, k is uniquely defined by the two parameters (Y, T. 

Suppose that for the dynamical system (2.1) a final state (1.3) is chosen in the domain Xr. Then all the 
conditions of Theorem 2 are satisfied by the function w(x, t) of form (2.2). Consequently the least necessary 
energy loss J* for the displacement of the AS in a centrally attracting Newtonian gravitional field from the state 
(1.2) to the state xrEXr satisfies inequality (1.9), where the first integral w(x, t) is given by formula (2.2). 

As follows from relations (2.4), for the motion of an AS under the action of a control of form (1.8), (2.2), the 
modulus of the kinetic momentum L(t) of the AS varies as follows: L(t) = L (0) exp ( -ak2t). From the formula 
it is clear that using relations (1.9), (2.2) one can estimate the least necessary energy loss to take the AS into the 
final state xrEXr, corresponding to both increasing the kinetic momentum L(T) (the case cr<O) and to 
decreasing it ((Y >O) compared with the initial value L(0). In the case (Y = 1 the least necessary energy loss J* 
does not exceed the difference between the value of the total mechanical energy of the AS in the initial phase 
state x0 and final x~E XT phase state. 

3. It is important to find all first integrals w(x, t) of the free equations of motion (1.5) satisfying 
the conditions of Theorem 1. Denoting the set of all such first integrals by W = {w(x, t)}, estimate 

(1.9) can be improved and represented in the form 

J. G w4”w 1 w(xo, 0) - W(XT, T) I (3.1) 

Furthermore, in a number of cases with the help of first integrals of the free equations of motion 
one can compute exactly the least value of functional (1.4) on the set of admissible controlled 
processes R. 

We have the following theorem. 
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Theorem 3. Suppose w (X - t) is a first integral of the free equations of motion (1.5), satisfying the 
conditions of Theorem 1 and such that the identities 

V, ( g ki” (V,w(x,t), hi(x))‘) = 0. f E [O.Tl 
j= 1 

(3.4 

are satisfied. 

Then we have the relation 

J, = 41 ]w(xo 7 0) - 4% VI (3.3) 

To prove Theorem 3 consider the auxiliary functional (1.12), where w (x, t) is a specified function 
satisfying the conditions of Theorem 1 and identity (3.2). Then one can write down the relation 

min Jb[x(.),~(.)] = 
lX,U] En 

min J[x( .),u( .)] t 
{X,U] En 

(3.4) 

+ W(XT, T) + ?K [XC. )I 

It follows from this that for any first integral w (x, t) satisfying the conditions of Theorem 3, the 
extremals of the functionals Jb[x(.), u(o)] and J[x( a), u(e)] on the set of admissible controlled 

processes Q coincide. Here for the optimal controlled process we have U, (x, t) = u’(x, t) and 
x*(t) =x”(t), where u’(x, t), x0(t) are given by formulae (1.7) and (1.8). 

Taking (1.8) into account, relation (3.4) can be represented in the form 

min Jb[x(.),d.)l = w(xT,T)+~J[x,(.),u.(.)~ 
iX,UI En 

Equality (3.3) follows directly from formulae (1.13) and (3.5). Theorem 3 is proved. 

(3.5) 

Example 3. Suppose that a controlled motion of a dynamical system is described by the linear non-stationary 
equations 

x’ = A(t)x+B(t)u (3.6) 

where A (t) and B(t) are matrices of dimensions (n x m) and (n x m), respectively. It is required to compute the 
least possible value of functional (1.4) to take system (3.6) in a given time T from an arbitrarily specified initial 
phase state (1.2) into the final state (1.3). 

We denote by IQ (x, t), . , u,(x, t) the independent first integrals of free motion x’ = A (f)x that are linear 
with respect to phase coordinates. We consider the function 

W(X, t) = S CiUi(X,t) (3.7) 
i= 1 

where the Ci are constants which are chosen so that the solution of the Cauchy problem of the form 

x’ = A(t) x + B(f) U0 (I), x(0) = x, (3.8) 

U;(t) = -k,j (V, i CiUi(X,t), bj(t)), j = l,...,m 
i= 1 

satisfies the boundary condition (1.3). 
We know [6, 151 that under given conditions on the matrices A(r) and B(r) and an arbitrary final state xr it is 

always possible to find constants C;, . . , C,* ensuring the existence of the solution of the boundary-value 

problem (3.8), (1.3). 
We can verify directly that the function (3.7) with C, = Cl (i = 1, . . , n) is a first integral of the free 

equations of motion and satisfies all the conditions of Theorem 3. Consequently, we have the relation 

Example 4. We consider a dynamical system of the form 
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x‘ = f(x,f)+ft, dimx = dimu = n x 1 (3.9) 

We assume that the free equations of motion (Eqs (3.9) with u = 0) have a first integraI---the Euclidean norm 
of the phase vector /x 1 = (xi + . . . +x~)“*. Such dynamical systems are called invariant norm systems [5,12]. 

We shall show that with the help of Theorem 3 one can calculate the least necessary energy loss to take a 
dynamical system with invariant norm from an arbitrary initial phase state (1.2) to the origin of coordinates 
x(T) = 0. 

One can verify that for ki = k (j = 1, . . . , n) the function 

w&t) = CvlXl (3.10) 

where Q: is an arbitrary constant, satisfies condition 1 of Theorem 1 and identities (3.2). 
We will determine the constant a so that the solution of the Cauchy problem (3.9), (1.2), (1.8), (3.10) at 

t = Tis zero. Choosing the control according to formulae (1.8) and (3.10), and taking into account that 1.x / is a 
first integral of Eqs (lS), one can write down the relation 1.x I* = -(uk*. Integrating it with respect to time 
between the limits t = 0 and t = T and putting Ix(T) ) = 0, we obtain 

a = IX, 1/wz-) (3.11) 

The function defined by formulae (3.10) and (3.11) satisfies all the conditions of Theorem 3. Using (3.3) the 
least necessary energy loss in taking the dynamical system (3.9) from the initial state (1.2) to the origin of 
coordinates has the form 

J, = IX* lZ/(2RZT) (3.12) 

In conclusion we make the following remarks. Since, when conditions (1.18) are satisfied, the 
dynamical system (1.17) has an invariant norm, from the results of Example 4 an estimate of the 
form (1.20) can be replaced by the exact value of J, , given by formulae (3.12). Comparison of the 
results of Examples 1 and 4 shows that in the general case it is desirable to find the set of all first 
integrals w (x, t) satisfying the conditions of Theorem 1, and to obtain an estimate for J, in the form 
of relation (3.1). 
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